Gefördert durch

aufgrund eines Beschlusses des Deutschen Bundestages

Digital hydromorphological Twin of the trilateral Wadden Sea TrilaWatt

Stakeholder Workshop

Product Development & Pilot Case Studies

Zakaria Mohamed, Wadden Sea Forum

mFUND 19F2206C-TrilaWatt 16.02.20223

Product Development & Pilot Case Studies

Stakeholder Engagement Process

TrilaWatt Application : Tidal Characteristics

Tidal characteristic numbers of currents: (V_{Fmean}, V_{Emean}, V_{Fmax}, V_{Emax},)

mean current during flood [m/s]

mean current during ebb [m/s]

maximum flood current [m/s]

maximum ebb current [m/s]

TrilaWatt Application : Tidal Characteristics

Tidal parameters are needed for :

- Marine spatial planning,
- Coastal and offshore construction projects,
- Ecological tasks, i.e Habitat identification

Support these tasks with numerical simulation results from the entire trilateral Wadden Sea area i.e

- > Tidal range, Salinity
- Peak sea surface elevation
- Mean, peak, and residual flood ,
- current velocity, and bed shear stress

https://trilawatt.eu

TrilaWatt Application : A Tool To support Marine Spatial Planning

The assistance systems that facilitates:

- 1. Planning procedures for the development of Offshore Projects
- 2. Quality assured and Consistent data

Source: O'Hagan, Anne Marie. 2020 State of the Science Report, Chapter 11: Marine Spatial Planning and Marine Renewable Energy. United States: N. p., 2020. Web. doi:10.2172/1633204.

TrilaWatt Application : A Tool To support Marine Spatial Planning

Source : O'Hagan, Anne Marie. 2020 State of the Science Report, Chapter 11: Marine Spatial Planning and Marine Renewable Energy. United States: N. p., 2020. Web. doi:10.2172/1633204.

Product Development: Example Use-Cases

Sector Based Application of the TrilaWatt Data products

Stakeholder Workshop | Product Development & Pilot Case Studies : Zakaria Mohamed 16.02.2023 | Seite 8

Thank You for your Attention

Where are you joining us today?

i) Start presenting to display the poll results on this slide. Stakeholder Workshop | Product Development & Pilot Case Studies : Zakaria Mohamed 16.02.2023 Seite 10

Do you Consider your organization / project as a Data Producer or Data User

Start presenting to display the poll results on this slide.
 Stakeholder Workshop | Product Development & Pilot Case Studies : Zakaria Mohamed
 16.02.2023 Seite 11

What kind of products do you wish for?

i) Start presenting to display the poll results on this slide. Stakeholder Workshop | Product Development & Pilot Case Studies : Zakaria Mohamed 16.02.2023 Seite 12

Product Development: Example Use-Cases

Sector Based Application of the TrilaWatt Data products

Stakeholder Workshop | Product Development & Pilot Case Studies : Zakaria Mohamed 16.02.2023 | Seite 13

Can the TrilaWatt Data be useful to the initiatives or projects that you are engaged?

Would you like to share with us your projects and initiatives to jointly identify potential synergies?

Thank You for your Attention

Mussel Potential Analysis

Figure 63: Influencing factors for the settlement and persistence of blue mussel beds.

TrilaWatt Application: Habitat Types

WPS to Assess Salt Concentration

Sample mussel potential map

* Salinity limits: ~19-28 ‰

	Fulitoral	- Muscholya	rkommon
Umweltnarameter	Adinimum		Madian
	wimmum	waximum	weatan
[m / Jahr]	-0,2	0,7	-
Sedimentverteilung d50 [mm]	0,079	0,652	0,175
rel. Trockenfalldauer / Tide [%]	0	42,210	14,163
mittl. Ebbestrom [m/s]	0,025	0,311	0,155
mittl. Flutstrom [m/s]	0,023	0,317	0,153
Orbitalgeschwindigkeit [m/s]	0,074	0,504	0,290
Bodenschubspannung Ebbe [N/m²]	0,026	0,979	0,259
Bodenschubspannung Flut [N/m²]	0,026	1,309	0,213
Wellenintensität / -brechen [W/m²]	0	0,21	0,001
Salinität [°/··]	18,676	27,717	24,379

🔀 Salinität 1998 (reklassifiziert [19-28 ‰])

Salinität 1998 [‰] Kanal 1 (Gray)

34,9

Risks Maps

 $\circ \text{ Erosion}$

 \circ Siltation

Potential Maps

○ Shell Settlement

Seagrass Settlement

Shell potential map

[EasyGSH-DB / BIWA-WATT]

https TrilaWatt

Mussel beds: Occurrence

Where can mussel beds settle at all and why do they stay there (stable)?

- Flow velocities and bottom shear stresses:analyzes (vfm, vEm, vFMx, vemx,dewB)
- Morphological stability map(Difference smallest/largest depth z)
- Determination of minimum water depth (Tnw, min z)
- Salinity limits

Examples for Simulation / Analyses (Products / Processing)

Texel till Ems: Tidal characteristic numbers / values

Tidal characteristic numbers of bed shear stress (tau_B) and salinity (PSU_m)

TrilaWatt Application : Planning of LNG Terminal Wilhelmsahaven

Research products of EasyGSH / TrilaWatt have been a helpful basis for the urgent and rapid planning of an LNG terminal (at and beside the construction site):

- Homogenized yearly bathymetries for a period from 1996 till 2015
- Difference bathymetry from 2015 to 1996 as morphodynamic implication
- Sedimentologic behavior
- Analyses of water level (min, max, tidal range, …)
- Analyses of velocities
 (min, max, flood / ebb, ...)
- Wave parameters (fastening of facility)

Max& Min Water Level analysis : at the LNG Terminal Location